
A Local Corrections Algorithm for Solving Poisson’s
Equation in Three Dimensions

Peter McCorquodale∗ Phillip Colella
Lawrence Berkeley National Laboratory

Gregory T. Balls Scott B. Baden
University of California, San Diego

October 30, 2006

Abstract

We present a second-order accurate algorithm for solving the free-space Poisson’s equa-
tion on a locally-refined nested grid hierarchy in three dimensions. Our approach is based on
linear superposition of local convolutions of localized charge distributions, with the nonlocal
coupling represented on coarser grids. The representation of the nonlocal coupling on the local
solutions is based on Anderson’s Method of Local Corrections and does not require iteration
between different resolutions. A distributed-memory parallel implementation of this method
is observed to have a computational cost per grid point less than three times that of a stan-
dard FFT-based method on a uniform grid of the same resolution, and scales well up to 1024
processors.

1 Introduction

We want to compute the solution to Poisson’s equation on R
3 with a charge distribution ρ with

support on a compact set Ω. Specifically, we seek the solution φ to

∆φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= ρ(x, y, z) (1)

that has the far-field behavior

φ(x) = − Q

4π|x| + o

(
1

|x|

)
, |x| → ∞; (2)

Q =

∫

Ω

ρ(x)dx. (3)

∗Corresponding author. Tel. +1-510-495-2458; fax +1-510-495-2505. E-mail address:
PWMcCorquodale@lbl.gov

1

Using the maximum principle for harmonic functions, it is not difficult to show that equations (1)–
(2) have a unique solution. This solution can be written as a convolution with the Green’s function
G [16]:

φ(x) = (G ∗ ρ)(x) ≡
∫
G(x− y)ρ(y) dy , G(z) = − 1

4π|z| . (4)

Solutions to (1) have a strong form of elliptic local regularity. If D ⊂ Ω is contained in a ball
of radius r, then the function

φD(x) =

∫

D

G(x− y)ρ(y)dy (5)

is real analytic at all points not contained in D, and its derivatives are rapidly decaying functions
of dist(x, D)/r. This suggests that an efficient method for computing the potential φ would be
to compute local convolutions of the form (5) on a disjoint union of patches, and then compute
the smooth global coupling among the patches using a calculation with a much coarser (and less
computationally expensive) discretization. In fact, this is the underlying approach to all O(N) −
O(NlogN) methods for potential theory, include the Fast Multipole Method (FMM) [12] and the
Method of Local Corrections (MLC) [2] for particles, and FFT-based methods [13], multigrid [7]
and domain decomposition [20] for gridded data.

In principle, the same strategy should also lead to efficient parallel methods. The local convolu-
tions are independent, and therefore can be performed in parallel on separate processors, while the
nonlocal coupling between patches is representable by such a small number of degrees of freedom
so as to have a negligible impact on the computational cost. For the particle methods such as FMM
and MLC, this is indeed the case [3]. For algorithms for gridded data, particularly on structured
and locally-structured grids, the results are mixed. FFT-based methods are probably optimal in
terms of the number of floating point operations required, but are limited to uniform grids and re-
quire some form of global communication of all the data (such as transpose) or complex mappings
of data onto processors. Multigrid iteration is applicable to locally-structured multiresolution grids
[4, 1] and effectively exploits local regularity to reduce the number of floating point operations
to a few hundred per grid point. However, it has an unacceptably high communication cost, with
communication / synchronization steps required after each local relaxation step — that is, every
few tens of floating point operations per grid point. Furthermore, there is so little computation
being done between communication steps that the opportunity to overlap computation with com-
munication is limited. The domain decomposition methods have typically led to iterative methods
by constructing a dense linear system for the degrees of freedom on the boundaries between sub-
domains using a Schur complement. Such approaches reduce that communication load somewhat,
but are still iterative, and for Poisson’s equation are substantially more compute-intensive than
multigrid or FFT-based methods.

A natural strategy is to apply the ideas developed for particle methods to gridded data. For
FMM, this has been done in two dimensions [9, 8] by applying the fast multipole method directly
to volume potentials on the grid, with methods that have a computational cost per grid point of
less than three times that of an FFT on a uniform grid, and furthermore have the locality of the
FMM approach with respect to communication. However, the direct extension of that approach to
three dimensions, while feasible, will not have the same absolute floating-point performance of a
modest integer multiple of that of an FFT-based method, due to the substantially larger cost per

2

grid point of the FMM method for computing volume potentials in 3D relative to to that of 2D.
To deal with that problem, one can take the approach of Greengard and Lee [11], in which local
volume potentials on patches are computed using fast transform methods, with the FMM at the
boundaries of patches to resolve the mismatch in the solutions at patch boundaries as well as the
nonlocal coupling between patches. Using FMM only on two-dimensional surfaces might reduce
the cost of that part of the calculation so as to make the overall floating-point cost, relative to FFT,
more like that of the 2D FMM-based algorithms. However, such an approach has been carried out
to date only in 2D.

The starting point for our approach is an extension of Anderson’s MLC algorithm in two
dimensions to gridded data in two dimensions [5, 6]. In this approach, local convolutions are
computed using the James–Lackner method [14, 17] of representing infinite-domain boundary
condition in terms of solutions to two Dirichlet problems on nested domains, plus a boundary-to-
boundary convolution. The nonlocal coupling between patches is represented by solving a coarse
grid problem and interpolating a correction back to the fine grid patches in a manner similar to
full-approximation-storage multigrid. Unlike multigrid, though, the method is noniterative. In the
present work, we generalize the method to locally-refined grids in three dimensions. A principal
technical issue is the generalization to three dimensions of the James–Lackner method for com-
puting local convolutions. We do this using a simplified FMM to compute the boundary-boundary
convolutions, combined with FFT methods to compute the volume potentials. Thus, the method is
similar in spirit to the approach of Greengard and Lee [11], but with different technical details.

2 Preliminaries

We represent both the potential field, φ, and the charge, ρ, on a discrete, three-dimensional Carte-
sian grid, with grid points spaced equally in all three directions by the same mesh spacing h. A
triple of integers i = (ix, iy, iz) indexes a point in real space xi = (ixh, iyh, izh) . Typically,
our computational domain will be described in terms of unions of rectangular patches of the form
Ωh = [l,u], where l and u are the integer triples corresponding to the lower and upper corners of
the region. Our grids are node-centered, with Ωh representing the region in physical space [lh,uh].
Thus a union of rectangular patches representing a disjoint union of regions in physical space may
have non-empty intersections in index space. We define a coarsening operator C as

C(Ωh, C) = [bl/Cc, du/Ce] (6)

where the operators b·c and d·e round up and down to the nearest integer, respectively. We also
need the grow operation G, which extends or shrinks an index domain by a uniform amount in each
direction:

G(Ωh, p) = [l− (p, p, p),u + (p, p, p)]. (7)

When p < 0, G returns a shrunken domain. We denote by ∂Ωh the set of boundary points of Ωh:

∂Ωh = Ωh − G(Ωh,−1). (8)

A field ψ is represented on this discrete grid by ψh such that

ψhi ≈ ψ(xi). (9)

3

We can also define a sampling operator S that projects a discrete field on Ωh onto C(Ωh, C):

S(ψh, C)i = ψhCi , i ∈ C(Ωh, C).

We denote by χh a discrete characteristic function defined as follows. For an interval [l, u] with
l and u integers, the function χh[l,u] on the real line has the value 1 in the interval (l, u), 0 outside
[l, u], and 1

2
at l and u. Then for a box B = [l,u], the function χhB is defined on index space as the

product of interval functions over all dimensions: χhB = χh[lx,ux]
χh[ly ,uy]

χh[lz ,uz]
. We also define a

characteristic function χ for the corresponding region in R
3,

χD(x) =

{
1, if x ∈ [lh,uh] ;
0, otherwise.

We use a discretization of the Laplacian operators with the stencil points contained in a three-
by-three block surrounding the evaluation point:

(∆hφh)i =
1

h2

∑

j∈{−1,0,1}3

a||j||φ
h
i+j (10)

where ||j|| is the number of nonzero components in j ∈ {−1, 0, 1}3 and falls in the range
{0, 1, 2, 3}. We shall use the 19-point Mehrstellen operator, specified by a0 = −4, a1 = 1

3
,

a2 = 1
6
, a3 = 0. If φexact,h is the exact solution evaluated at grid points, and the truncation error,

τhj , is defined as
τhj = ρhj − (∆hφexact,h)j , (11)

then we can use Taylor expansion, along with the fact that ∆2φ = ∆ρ, to determine that

τhj = ρhj − (∆hφexact,h)j =
−h2
12

∆ρ+O(h4). (12)

Thus a solution to the system
∆hφh = ρh , (ρh)j = ρ(jh) (13)

is second-order accurate: φhj = φexact,hj + O(h2). The particular form of the truncation error in
(12) leads to a strong localization of the O(h2) error: if jh is contained in the complement of the
closure of the support of ρ, then it is not difficult to show that φhj = φexact,hj + O(h4) [6]. More
classically, one can also precondition the charge and solve

∆hφ∗,h = ρ∗,h = ρh +
h2

12
∆̃hρh, (14)

where ∆̃h is any second-order accurate discretization of the Laplacian, to obtain a solution that
is O(h4) everywhere. With infinite-domain boundary conditions, it is also possible to make a
Mehrstellen correction to the solution after solving (13):

φh := φh +
h2

12
ρh. (15)

4

3 Convolutions on Bounded Domains

A basic component of our method of local corrections is a single-grid solver for Poisson’s equation
with infinite-domain boundary conditions. We follow the approach used for the 2D problem by
James [14] and Lackner [17].

Let Ω be the support of the right-hand side ρ in (1). Clearly, we can represent the solution
to (1)–(2) on Ω in terms of solutions of Poisson’s equation with Dirichlet boundary conditions
on a slightly larger domain, where the boundary conditions are computed using the convolution
operator (4). We can reduce the convolution to a boundary-boundary convolution by solving an
additional Dirichlet problem. Let Ω1 and Ω2 contain Ω with Ω2 ⊃ Ω1 ⊃ Ω. Let φ1 be the solution
to

∆φ1 = ρ on Ω1 ; φ1 = 0 on ∂Ω1

and define a boundary charge distribution q

q ≡ ∂φ1

∂n
on ∂Ω1

where n is the unit outward normal. Then the boundary potential φB induced by q

φB(x) =

∫

∂Ω1

G(x− y)q(y) dAy (16)

is a solution to Laplace’s equation on R
3− ∂Ω1, and satisfies the jump relations [φB] = 0, [∂φB

∂n
] =

−q on ∂Ω1. Thus the function φ given by

φ =

{
φ1 + φB, on Ω1;
φB elsewhere

is a solution to (1)–(2). In particular, φ is a solution to the Dirichlet problem

∆φ = ρ on Ω2 ; φ = φB on ∂Ω2

for any Ω2 ⊃ Ω1. Note that the calculation of the Dirichlet boundary conditions requires only the
convolution of the Green’s function with the boundary charge q.

We use the representation described above to compute an approximation of the convolution
(4). We assume that Ω is a cube, which we discretize to obtain the discrete domain Ωh with mesh
spacing h and containing (N + 1)3 points. We also define discrete domains Ωh

1 = G(Ωh, s1) and
Ωh
2 = G(Ωh, s1+ s2), for some s1, s2 ≥ 0. Then the James–Lackner algorithm in three dimensions

can be described as follows.
3D JAMES–LACKNER ALGORITHM

1. Solve the homogeneous Dirichlet problem on Ω1:

∆hφh1 = ρ on G(Ωh
1 ,−1) ; φh1 = 0 on ∂Ωh

1

and compute the discrete boundary charge qi = DB(φ
h
1)i, i ∈ ∂Ωh

1 . We use a fourth-order
one-sided difference approximation of the normal derivative for DB , e.g.,

DB(f)0,j,k =
−25f0,j,k + 48f1,j,k − 36f2,j,k + 16f3,j,k − 3f4,j,k

12h
.

5

2. Given the discrete charge distribution q on ∂Ω1, compute an approximation to the convolu-
tion integral (16) to obtain gi ≈ φB(ih) for i ∈ ∂Ωh

2 .

3. Solve the inhomogeneous Dirichlet problem on Ω2:

∆hφh = ρ on G(Ωh
2 ,−1) ; φh = g on ∂Ωh

2 .

The solution of the Dirichlet problems in steps 1 and 3 can be done in O(N 3logN) operations
using a fast discrete sine transform to diagonalize ∆h. Step 2 is performed using a fast multipole
method that takes advantage of the fact that the charge is defined on a union of planar surfaces:

∂Ω1 = Ω1(+, 0) ∪ Ω1(−, 0) ∪ Ω1(+, 1) ∪ Ω1(−, 1) ∪ Ω1(+, 2) ∪ Ω1(−, 2)

where Ω1(+, d) and Ω1(−, d) are respectively the high and low faces of Ω1 in which coordinate
d ∈ {0, 1, 2} is fixed. Then the integral in (16) can be split up as

φB(x) = Φ+,0(x) + Φ−,0(x) + Φ+,1(x) + Φ−,1(x) + Φ+,2(x) + Φ−,2(x) (17)

where Φ±,d is the contribution from face Ω1(±, d):

Φ±,d(x) =

∫

Ω1(±,d)

G(x− y)q(y) dAy, (18)

which is a planar integral. Step 2, then, can be broken down as follows.

2a. Split each face Ωh
1(±, d) into patches of dimensions r × r centered at points on the face

coarsened by r, where r is divisible by 4. Then calculate the multipole moments up to order
M of qh on each patch. For the patch on the face Ωh

1(−, 2) that is centered at the point
(i0, i1,−s1/r) in r-coarsened coordinates, the (p0, p1) moment is

Ap0,p1,−,2
i0,i1

=
∑

−r/2≤j0≤r/2

∑

−r/2≤j1≤r/2

wj0wj1q(ri0+j0,ri1+j1,−s1)(j0h)
p0(j1h)

p1

(0 ≤ p0 + p1 ≤M ; p0, p1 ≥ 0) (19)

where the wj are the weights from Boole’s rule of integration, which is O(h6) accurate:

wj =

14
45

if |j| = r
2
;

28
45

if r
2
+ j ≡ 0 mod 4 and |j| < r

2
;

64
45

if j is odd;
8
15

if r
2
+ j ≡ 2 mod 4.

(20)

The moments for the other faces are computed analogously.

2b. On each face of ∂Ωh
2 coarsened by r in each dimension, plus a layer of coarse points of width

P , add up the evaluations Φ±,d of multipole expansions due to all patches of all faces of ∂Ωh
1 .

As an example,

Φ−,2(~x) =
∑

i0,i1

∑
p0,p1

Ap0,p1,−,2
i0,i1

× (21)

(−1)p0+p1
p0!p1!

∂p0+p1G

∂zp00 ∂z
p1
1

(x0 − i0rh, x1 − i1rh, x2 + s1h)

6

���
���
���
���

P = 1

P = 1

Figure 1: In step 2 of our implementation of the 3D James–Lackner algorithm, multipole moments
are calculated for each patch on each face of ∂Ωh

1 , such as the patch shown cross-hatched in red.
The multipole expansions are then evaluated at the coarse points on the faces of Ωh

2 augmented
by an additional layer of width P , indicated with blue circles for one face. These evaluations are
interpolated to all the fine points on the faces of ∂Ωh

2 , located at intersections of the black lines,
using two passes. The evaluation points of the first pass are shown as small green diamonds.

using two-dimensional Taylor expansions of the Green’s function G around the points (x0−
i0rh, x1 − i1rh, x2 + s1h). The indices i0, i1 in the sum are over indices of coarse points on
the face Ωh

1(−, 2), and p0, p1 ≥ 0; p0 + p1 ≤M .

2c. On each face of ∂Ωh
2 , interpolate from the coarse points to the remaining fine points on the

face, using a tensor product of Lagrange interpolating polynomials as illustrated in Figure 1.

Choosing r ≈
√
N provides sufficient accuracy for the solution and allows the integration step

to be completed in O((M 2 + P)N 2) work. For O(h4) error, we set M = 7 and P = 3, and these
are independent of N . Hence step 2 requires O(N 2) work.

We also note constraints required on s2, the spacing between Ωh
1 and Ωh

2 . Convergence re-
quirements of the multipole method force us to choose s2 with care. In order for the multipole
expansions from a patch to converge, the distance from the center of a patch on a face of Ωh

1 to the
points on the faces of Ωh

2 , on which the expansion is evaluated, should be at least twice the radius
of the patch. Here we define the radius of a patch as the maximum distance from the patch center
to any point on the patch. Recall that we chose our patches to be r × r fine grid points. Thus
our patches have a radius of rh/

√
2, and the distance requirement becomes s2h ≥ 2rh/

√
2. We

also need the number of cells along the length of Ωh
2 to be divisible by r. Combining these two

requirements, we arrive at the following formula for s2:

s2 =
r

2
d2
√
2 +

N + 2s1
r

e − N + 2s1
2

. (22)

For efficiency, both s1 and s2 should be as small as possible. If the distance of the support of ρ to
∂Ω1 is nonzero, then we can set s1 = 0.

We now examine the computational costs in the single-grid solver, listing the operation counts
for each step:

7

1. FFT-based Poisson solver on Ωh
1 : O(N 3 logN).

Normal derivatives on faces of Ωh
1 : O(N 2).

2. Integration to boundary conditions on faces of Ωh
2 using FMM: O(N 2).

3. FFT-based Poisson solver on Ωh
2 : O(N 3 logN).

Thus the single-grid infinite-domain solver operation count is bounded by the fast Poisson solves
that use Dirichlet boundary conditions, and the overall computational cost of an infinite-domain
solution is O(N 3 logN).

4 Method of Local Corrections

The domain decomposition algorithm described here is the finite-difference analogue [6] of An-
derson’s Method of Local Corrections (MLC) [2], extended to locally-refined nested grids in three
dimensions. To simplify the presentation, we describe the MLC algorithm on two levels. We use
a fine-grid discretization Ωh corresponding to a rectangular domain Ω that contains the support of
the charge ρ. Within Ωh we have a set of cubic patches Ωh

k of equal size that overlap only at patch
boundaries. These subdomains make up a region on which the charge is finely resolved. For each
patch, the charge ρhk is defined on Ωh

k . Our method entails solving local problems on each of the
Ωh
k in parallel, as well as on a single coarse global mesh ΩH . The spacing of the coarse mesh is

H = Ch, where C is a specified coarsening factor.
Because our meshes are node-centered, the points of ΩH map directly onto corresponding

points in Ωh, and no averaging is required to coarsen the mesh data. Thus, we can coarsen the
mesh by sampling the mesh without having to interpolate. In particular, we coarsen a fine grid
representation using the sample operator SH : for each point xC , we can find the coarse grid value
ψH(xC) (where ψH has grid spacing H) by finding the fine grid point x at the corresponding
position in ψh (with grid spacing h = H/C):

ψH(xC) = (SH(ψh))(x/C) = ψh(x). (23)

If ρ = ρ(x) is the continuous charge, we set the discrete coarse-level charge ρH on ΩH and
fine-level charge ρhk on each Ωh

k to be

(ρH)i = ρ(iH) , i ∈ ΩH ;

(ρhk)i = (χhΩh
k
)i ρ(ih) , i ∈ Ωh

k.

The algorithm has three computational steps interspersed by two communication steps.
METHOD OF LOCAL CORRECTIONS

1. INITIAL LOCAL SOLUTION. Using the 3D James–Lackner algorithm, calculate a local
infinite-domain solution on each local subdomain, Ωh

k , augmented with an overlap region:

∆hφh,initial

k = ρhk on G(Ωh
k, s+ Cb) (24)

8

and construct a coarsened version of the solution, φH,initial

k , by sampling:

φH,initial

k = SH(φh,initial

k) on G(ΩH
k , s/C + b). (25)

Here s is a correction radius, C is the coarsening factor, and b is the width of a layer for
polynomial interpolation to be used in step 3.

2. GLOBAL COARSE SOLUTION. Couple the individual local solutions by solving another
Poisson equation on a coarsened mesh covering the entire domain. First construct coarsened
local charge fields:

RH
k =

{
∆HφH,initial

k on G(ΩH
k , s/C − 1);

0 elsewhere
(26)

and sum these charge fields to form a global coarse representation of the charge:

RH =
∑

k

RH
k . (27)

Then solve
∆HφH = RH + (1−

∑

k

χΩH
k
)ρH on G(ΩH , s/C + b). (28)

with infinite-domain boundary conditions, using the 3D James–Lackner algorithm. For this
solve, we take the base domain to be G(ΩH , 2d(s/C − 1)/2e) because the length must be
divisible by 4.

3. FINAL LOCAL SOLUTION. Solve

∆hφhk = ρhk on Ωh
k (29)

with Dirichlet boundary conditions on ∂Ωh
k:

φhk(x) =
∑

k′:x∈G(Ωh,initial

k′
,s)

φh,initialk′ (x) + I(φH ,corr) (30)

where I is the same interpolation operator used in step 2c of the single-grid infinite-domain
Poisson solver (setting the layer width P to b), and

φH ,corr = φH(x)−
∑

k′:x∈G(Ωh
k′
,s)

φH,initial

k′ (x). (31)

Figure 2 depicts the regions from which data are taken to set boundary conditions on a face.

Finally, we apply the Mehrstellen correction (15) to the solution.
For O(h2) accuracy of the method, we set b = 2 and s = 2C.

9

Figure 2: Setting boundary values for a final local solution in step 3 of MLC. For the face shaded
red in the top of the figure, in a layout of eight cubes, the lower diagrams depict the regions
from which data are copied from faces of different neighboring boxes. Solid lines indicate the
boundaries of the boxes Ωh

k′ , dashed lines the boundaries of the boxes G(Ωh
k′ , s), and dotted lines

the boundaries of the boxes G(Ωh
k′ , s + Cb). Fine-grid data are copied to the red face from the

nodes inside and on the edges of the regions shaded dark blue. Coarse grid data are copied from
nodes inside and on the edges of the regions shaded both dark and light blue, and then interpolated
to nodes on the red face that are inside and on the edges of the regions shaded dark blue.

10

4.1 Separating the Monopole Component

In order to minimize the cost of the infinite-domain solution, we would like to set s1, the amount
by which we grow the domain in the initial Dirichlet solution for the James-Lackner algorithm,
to be zero. In the present application, the charge on each patch is nonzero all the way out to the
boundary, so that the conditions under which this would be valid do not hold. In particular, for the
fixed-size patches (relative to the mesh spacing) we are using here, this leads to an O(1) relative
error in the monopole component of the field used to compute the boundary conditions for the
second Dirichlet solution. We eliminate this error by separating out the monopole component on
each patch, and treating it exactly.

Specifically, for a given patch B, we compute ρ̄, the mean of ρ over B, and to subtract ρ̄χhB
from the right-hand side of (1) before solving, then to add ρ̄ξB to the solution, where ξB ≡ G ∗χB
is computed analytically and stored.

In the initial local solve, we replace (24) by

∆hφ̃h,initial

k = ρhk − ρ̄hkχ
h
Ωh

k
on G(Ωh

k , s+ Cb) (32)

and then sample the solution:

φ̃H,initial

k = SH(φ̃h,initial

k) on G(ΩH
k , s/C + b). (33)

The updated solutions are

φh,initial

k = φ̃h,initial

k + ρ̄hkξ
h
Ωh

k
; (34)

φH,initial

k = φ̃H,initial

k + ρ̄hkξ
H
ΩH

k
. (35)

In forming the right-hand side for the global coarse solve, we replace (26) by

RH
k =

{
∆H φ̃H,initial

k + ρ̄hkχ
H
ΩH

k

on G(ΩH
k , s/C − 1);

0 elsewhere.

In the final local Dirichlet solves, we replace (29) by

∆hφ̃hk = ρhk − ρ̄hkχ
h
Ωh

k
on Ωh

k (36)

and the Dirichlet boundary conditions (30) by

φ̃hk(x) =
∑

k′:x∈G(Ωh,initial

k′
,s)

φh,initialk′ (x) + I(φH ,corr) + ρ̄hkξ
h
Ωh

k
(x). (37)

Finally, we have the solution
φhk = φ̃hk + ρ̄hkξ

h
Ωh

k
. (38)

11

4.2 Extending to more than two levels

In extending the MLC solver from two levels to three, we assume a hierarchical nesting of patches,
such that each fine-level patch is contained in one and only one middle-level patch. We run the
two-level MLC solver separately within each middle-level patch, except that we perform the global
coarse solve (28) on the middle-level patches with a two-level MLC solver using all the middle-
level patches and the domain of the coarsest level.

The MLC solvers between the middle and fine levels require an expansion of the middle-level
patches, specifically by 2d(s/C − 1)/2e, taking s and C to be respectively the correction radius
and coarsening ratio between these two levels. Then in the MLC solver between the middle and
coarse levels, the finer-level patches Ωh

k will overlap by this amount.
We may similarly extend to an arbitrary number of levels. In our implementation of the MLC

solver on three levels, in order to retain accuracy we set b = 2 and a larger buffer size s = 4C
(instead of s = 2C) relating the coarse and the middle levels where C is the coarsening factor
between middle and coarse levels. Between the fine and middle levels, we retain buffer size s = 2C
where C is the coarsening factor between these levels.

5 Results

As an example, we use right-hand sides built from ρoscm , a spherically symmetric function with
high-wavenumber component:

ρoscm (r) =

{
((r − r2) sin(2mπr))2, if r < 1 ;
0, if r ≥ 1 .

The wavelength of ρoscm is 1
2m

. If we set α = 4mπ, then the integral of ρoscm over space is

∫
ρoscm dV = π(

2

105
+

48

α4
− 1440

α6
),

and the exact solution of
∆φoscm = ρoscm

with infinite-domain boundary conditions is:

φoscm (r) =

r6/84− r5/30 + r4/40+
60/α6 − 9/α4 − 1/120 + 120/(α6r)+
(−120/(α6r)− 9/α4 + 300/α6 + 36r/α4 + r2/(2α2)
−30r2/α4 − r3/α2 + r4/(2α2)) cos(αr)+
(12/(α5r)− 360/(α7r)− 96/α5 + 120r/α5

−3r/α3 + 8r2/α3 − 5r3/α3) sin(αr), if r < 1 ;
(−1/210− 12/α4 + 360/α6)/r, if r ≥ 1 .

This solution is negative and has its minimum value at the origin:

φoscm (0) = − 1

120
− 6

α4
.

12

We test with three different charge densities on the unit cube [0, 1]3, with m set to either 7, 15,
or 30, and R = 0.05 in

ρ(x) =
1

R3
(ρoscm (

|x− c1|
R

) + ρoscm (
|x− c2|

R
) + ρoscm (

|x− c3|
R

)), (39)

where c1 = (3
16
, 7
16
, 13
16
), c2 = (7

16
, 13
16
, 3
16
), and c3 = (13

16
, 3
16
, 7
16
) . This is a superposition of three

disjoint spherical charge distributions. The wavelength is λ = R/(2m) = 1/(40m). The solution,
which is negative, attains its minimum value at the sphere centers,

φexact(c1) = φexact(c2) = φexact(c3) = (− 1

120
− 6

α4
)/R + (− 1

105
− 24

α4
+

720

α6
)/D

where D = |c1 − c2| = |c1 − c3| = |c2 − c3| is the distance between any two sphere centers.
Our example uses three levels of boxes shown in Figure 3, with a coarsening factor of 4 between

adjacent levels. The boxes are as follows.

• Fine level: all boxes are cubes of length 32. If the whole domain is split into 512 = 83

subdomains of length 1
8
, then three of these subdomains contain the support of the charge;

these subdomains are then fully refined with fine-level boxes.

• Middle level: all boxes are cubes of length 32 (becoming 36 after expansion, as described in
section 4.2). Boxes at this level cover the three subdomains with the support of the charge,
plus an additional layer of boxes.

• Coarse level: these boxes cover the entire domain and are parallel slabs in one direction.
The number of slabs is the domain length in coarse cells divided by 4, or the number of
processors, whichever is less.

5.1 Convergence results

In reporting our convergence results, we show the max norms and L2 norms of solution error
(difference between calculated solution and exact solution) normalized by the max norm of the
exact solution. We also show the L2 norm of the error on the finest grids alone. (For all the cases
discussed here, the max norm on the finest grids is equal to the max norm on the whole domain.)
We also calculate a convergence rate, p, defined such that if εf and εc are the norms of the solution
error with mesh spacings hf and hc, respectively, then

p = log2(
εf
εc
)/ log2(

hf
hc

). (40)

See Table 1 for convergence results with m set to 7, 15, and 30, in the example with three-level
MLC separating monopole solutions. The tables show the fine-level mesh spacing h and norms
of the normalized solution error εh, which is the difference between calculated solution and exact
solution, divided by ||φexact||∞, when the finest-level mesh spacing is h. While overall the solution
error is O(h2), there is considerable variation in the rates, depending on the norm used and the grid
resolution. This variation is not surprising, given the fact that there are multiple parameter choices

13

Figure 3: Boxes in three-level solve used in example. All boxes at the fine and middle levels have
dimensions 32× 32× 32. The coarse level is split into slabs across processors.

14

for the method that correspond to different asymptotic contributions to the error. The local James–
Lackner computations have a contribution to the error that is O(h2) coming from the choice of
multipole parameters, while the local truncation error for the Mehrstellen operator is O(h4), since
we are applying the Mehrstellen correction in the form of (15). Finally, the choice of b = 2 in
the boundary interpolation (30) for the final local solution step (29) corresponds to an error that
is formally O(h6), although in this case, the contribution to the solution that is being interpolated
is not sufficiently smooth to justify such an error estimate. In fact, the choice b = 2 was made
empirically, with that choice leading to the most uniform convergence behavior. Such empirical
choices are a weakness in the in the algorithm, and one that we intend to correct in future work.

Table 2 shows solution error on the three-level example with m = 7 when it is run without sep-
arating the monopole solution. This does not converge in L2 norm, and has very poor convergence
in max norm, thus illustrating the need for separating the monopole contribution to the solution.

Table 3 shows convergence results for the same examples (m set to 7, 15, and 30) with boxes
at only two levels of refinement instead of three. The boxes at the fine level are the same as in
the three-level arrangement, but the middle level is removed, and there is a coarsening factor of
4 from the fine level to a coarse level covering the full domain and split into parallel slabs. The
mesh spacing at the coarser level in the two-level arrangement is the same as that of the middle
level in the three-level arrangement. Comparing the two-level results in Table 3 and the three-level
results in Table 1, with finest-level mesh spacings of h = 1/2048 and h = 1/4096, we see that
the increased accuracy in the two-level calculation is worth approximately a factor of two in mesh
spacing, with the difference decreasing as the wavenumber m increases. For the m = 30 cases,
the three-level computation has essentially the same error as the two-level computation at the same
fine-grid resolution. As m decreases to 15 and 7, the error of the two-level calculation becomes
much smaller than that of the three-level calculation.This is consistent with the observation that
there are two competing sources of error: that induced by the local truncation error, which for a
fixed h scales like m2; and that coming from the error in the representation of far-field effects,
which is only weakly dependent on m. Thus as m decreases from m = 30, the contribution of
the local truncation error rapidly decreases, leaving only the contribution from the error in the
representation of the far-field effects. These are more accurately represented by a single-level
calculation than by a two-level calculation at the same resolution. Nonetheless, we shall see below
that, in these cases, the two-level and three-level calculations provide roughly the same accuracy
for a given computational cost.

We also ran the problem on different sizes of a single grid with the James–Lackner solver of
section 2 and Mehrstellen preconditioning (14). The results on the left side of Table 4 show solu-
tion error converging in max norm at a rate that is fourth order in the mesh spacing, as long as the
oscillating right-hand side is resolved sufficiently. Nonetheless, the accuracy of the Mehrstellen
method, by itself, is insufficient to make up for the lack of resolution in the coarsest-level calcula-
tion, so that the MLC method on the locally-refined grids substantially increases the accuracy of
the overall solution. This is demonstrated in Table 4 by listing beside the Mehrstellen result, the
max norm error of the three-level MLC result whose coarsest level has the same mesh spacing as
that of the Mehrstellen result.

15

m h ||εhall||∞ p ||εhfine||2 p ||εhall||2 p λ/h

7 1/2048 2.132× 10−5 1.632× 10−7 1.738× 10−7 7.31
7 1/4096 4.735× 10−6 2.17 2.379× 10−8 2.78 4.712× 10−8 1.88 14.63
7 1/8192 1.130× 10−6 2.07 5.720× 10−9 2.06 8.419× 10−9 2.48 29.26

m h ||εhall||∞ p ||εhfine||2 p ||εhall||2 p λ/h

15 1/2048 2.437× 10−5 2.009× 10−7 2.357× 10−7 3.41
15 1/4096 4.906× 10−6 2.31 2.642× 10−8 2.93 3.061× 10−8 2.95 6.83
15 1/8192 1.157× 10−6 2.08 6.648× 10−9 1.99 9.737× 10−9 1.65 13.65

m h ||εhall||∞ p ||εhfine||2 p ||εhall||2 p λ/h

30 1/2048 5.022× 10−5 3.798× 10−7 3.848× 10−7 1.71
30 1/4096 5.274× 10−6 3.25 3.795× 10−8 3.32 6.296× 10−8 2.61 3.41
30 1/8192 1.542× 10−6 1.77 7.593× 10−9 2.32 1.270× 10−8 2.31 6.83

Table 1: Norms and convergence rates of solution error with adaptive three-level MLC separating
monopole solutions, for example with m = 7, 15, and 30. The norms ||εhfine|| are over the finest
level, and ||εhall|| are over all three levels.

m h ||εhall||∞ p ||εhfine||2 p ||εhall||2 p λ/h

7 1/2048 4.280× 10−5 8.449× 10−7 2.608× 10−6 7.31
7 1/4096 2.794× 10−5 0.62 7.009× 10−7 0.27 2.500× 10−6 0.06 14.63
7 1/8192 1.971× 10−5 0.50 6.713× 10−7 0.06 2.521× 10−6 −0.01 29.26

Table 2: Norms and convergence rates of solution error with adaptive three-level MLC without
separating monopole solutions, for the example with m = 7. Compare with Table 1, which shows
results of MLC separating monopole solutions. The norms ||εhfine|| are over the finest level, and
||εhall|| are over all three levels.

16

m h ||εhall||∞ p ||εhfine||2 p ||εhall||2 p λ/h

7 1/2048 4.498× 10−6 2.431× 10−8 2.471× 10−8 7.31
7 1/4096 9.698× 10−7 2.21 7.664× 10−9 1.67 3.373× 10−8 −0.45 14.63

m h ||εhall||∞ p ||εhfine||2 p ||εhall||2 p λ/h

15 1/2048 7.845× 10−6 7.889× 10−8 1.232× 10−7 3.41
15 1/4096 1.121× 10−6 2.81 6.919× 10−9 3.51 9.526× 10−9 3.69 6.83

m h ||εhall||∞ p ||εhfine||2 p ||εhall||2 p λ/h

30 1/2048 3.681× 10−5 3.380× 10−7 3.381× 10−7 1.71
30 1/4096 2.530× 10−6 3.86 2.365× 10−8 3.84 5.587× 10−8 2.60 3.41

Table 3: Norms and convergence rates of solution error with adaptive two-level MLC, for examples
with m = 7, 15, and 30. Compare with Table 1, which shows results with three-level MLC. The
norms ||εhfine|| are over the finer level, and ||εhall|| are over both levels.

one-grid Mehrstellen three-level MLC
m H ||εH ||∞ p λ/H h ||εh||∞ p λ/h
7 1/256 3.529× 10−2 0.91 1/4096 4.735× 10−6 14.63
7 1/512 4.193× 10−4 6.40 1.83 1/8192 1.130× 10−6 2.07 29.26
7 1/1024 1.726× 10−5 4.60 3.66

one-grid Mehrstellen three-level MLC
m H ||εH ||∞ p λ/H h ||εh||∞ p λ/h
15 1/256 1.019× 10−2 0.43 1/4096 4.906× 10−6 6.83
15 1/512 3.288× 10−3 1.63 0.85 1/8192 1.157× 10−6 2.08 13.65
15 1/1024 1.446× 10−4 4.51 1.71

one-grid Mehrstellen three-level MLC
m H ||εH ||∞ p λ/H h ||εh||∞ p λ/h
30 1/256 4.556× 10−2 0.21 1/4096 5.274× 10−6 3.41
30 1/512 4.167× 10−3 3.45 0.43 1/8192 1.542× 10−6 1.77 6.83
30 1/1024 9.687× 10−4 2.10 0.85

Table 4: Max norms and convergence rates of solution error with Mehrstellen on a single grid
(on left), for examples with m = 7, 15, and 30. Also shown (on right) are the max norms of the
solution error for the three-level MLC, copied from Table 1, with the same mesh spacing H at the
coarse level.

17

5.2 Timing results

In this section we present computational results demonstrating the low communication overhead
of our implementation of the MLC algorithm on up to 1024 processors.

We ran on NERSC’s Seaborg IBM SP system, located at the National Energy Research Sci-
entific Computing Center1. Seaborg contains POWER3 SMP High Nodes interconnected with a
“Colony” switch. Each node is an 16-way Symmetric Multiprocessor (SMP) based on 375 MHz
Power-3 processors2, sharing between 16 and 64 Gigabytes of memory, and running AIX version
5.1.

The solver is written in a mixture of C++ and Fortran 77, and calls the FFTW library [10] for
the fast discrete sine transforms in the Dirichlet Poisson solves. We used the IBM C++ and Fortran
77 compilers, mpCC and mpxlf. C++ code was compiled with the IBM mpCC compiler, using
options -O2 -qarch=pwr3 -qtune=pwr3. Fortran 77 was compiled with mpxlf with -O2
optimization. We used the standard environment variable settings, and we collected timings in
batch mode using loadleveler. The timings reported are based on wall-clock times, obtained with
MPI Wtime().

The times reported are for the runs with the shortest total times of m set to 7, 15, or 30.
Timers were placed around large function calls rather than inner loops to reduce the effects of
noise in the timing results. The bulk-synchronous nature of the algorithm allows us to fully separate
computation times from communication times. Reported running times do not include one-time
startup costs such as a preprocessing phase for the serial James–Lackner solver that computes a
matrix for obtaining outer-grid boundary conditions from multipole coefficients due to charges on
the inner-grid boundary. This matrix depends only on the problem size and accuracy parameters,
and its computation is considered a fixed overhead to be amortized over many calls to the solver.

In measuring the performance, we scaled the work with the number of processors. The run
parameters and timing results for the performance tests of the three-level MLC are shown in Table
6. Processors are allocated to SMP nodes in such a way that each node runs 16 processors.

Results for performance tests of the two-level MLC are shown in Table 7. Since execution
slows down when the memory capacity of a node is close to being reached, in the two-level MLC
runs, processors are allocated to SMP nodes in such a way that each SMP node runs only eight
processors — that is, half of the processors on the node.

Results for performance tests of the parallelized single-grid solver are shown in Table 8. In
these examples, as with the two-level MLC runs, processors are allocated to SMP nodes with eight
processors per node.

We define grind time as the processor-time taken per fine-level solution point. Ideally the grind
time would remain constant over problem sizes and numbers of processors. We see from Table 6
that for the three-level MLC, grind times are fairly stable, at around 22 to 23 µsec/point.

Grind times vary by almost a factor of two in the two-level MLC examples in Table 7. These
results are not as consistent as with the three-level example, because the coarse-level solution takes
a majority of the run time: it is computed using a conventional parallel FFT algorithm that does not
scale as well as the local solves, and has 2.65 times as many points as the local fine grids (Table 5).
This lack of scaling also had an impact on the memory requirements. The two-level calculations
required substantially more memory than the three-level calculations, so that we were only able

1http://www.nersc.gov/nusers/resources/SP
2http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/nighthawk.html

18

Size three-level example two-level example
N fine middle coarse fine coarse

2048 50 923 779 6 440 067 2 146 689 50 923 779 135 005 697
4096 405 017 091 21 567 171 16 974 593 405 017 091 1 076 890 625
8192 3 230 671 875 99 228 483 135 005 697

Table 5: Numbers of solution points at each level in the three-level MLC example (with timing
results in Table 6) and the two-level MLC example (with timing results in Table 7).

Size Times for each stage (seconds) Total Grind
P N InitF InitM Crse BndM FinM BndF FinF (sec) (µsec/pt)
16 2048 44.99 12.52 3.51 0.33 0.66 2.64 4.89 69.57 21.86

128 4096 45.51 6.76 10.19 0.15 0.30 4.12 4.75 71.83 22.70
1024 8192 46.01 3.95 13.04 0.15 0.17 4.03 4.78 72.28 22.91

Table 6: Timing breakdowns for runs of an adaptive three-level MLC solver, with P processors
and domain length N . Boxes at the fine and middle levels are all cubes of length 32. InitF: Initial
fine-level local solve. InitM: Initial middle-level local solve. Crse: Coarse-level solve. BndM:
Boundary communication to middle-level final solve. FinM: Final middle-level solve. BndF:
Boundary communication to fine-level final solve. FinF: Final fine-level solve.

Size Times for each stage (seconds) Total Grind
P N Init Crse Bnd Fin (sec) (µsec/pt)
64 2048 11.73 22.61 0.26 1.22 35.84 45.04

512 4096 13.25 47.46 0.50 1.21 62.44 78.93

Table 7: Timing breakdowns for runs of an adaptive two-level MLC solver, with P processors and
domain length N . Boxes at the fine level are all cubes of length 32. Init: Initial fine-level local
solve. Crse: Coarse-level solve. Bnd: Boundary communication to fine-level final solve. Fin:
Final fine-level solve.

Size Times for each stage (seconds) Total Grind
P N points Homo Normal FMM Inhomo (sec) (µsec/pt)
4 256 16 974 593 10.53 0.08 2.23 57.34 70.20 16.54

32 512 135 005 697 13.39 0.87 4.51 22.93 41.72 9.89
256 1024 1 076 890 625 13.65 3.06 10.53 19.26 46.52 11.06

Table 8: Timing breakdowns for runs of infinite-domain solver on one level, with P processors
and domain length N , and given number of points, which is (N + 1)3. Homo: Initial homoge-
neous Dirichlet Poisson solve. Normal: Copying of Poisson solution and evaluation of normal
derivatives. FMM: Fast multipole method. Inhomo: Final inhomogeneous Dirichlet Poisson solve.

19

Size Communication in stages (seconds) Total % of
P N Boundary Coarse Residuals (sec) runtime
16 2048 0.37 0.22 0.08 0.68 0.97 %

128 4096 1.56 0.58 0.14 2.28 3.17 %
1024 8192 1.40 1.77 0.68 3.85 5.32 %

Table 9: Communication time in the adaptive three-level MLC solve, for the same runs as reported
in Table 6. Boundary: Copying of solutions within and between fine and middle levels (as illus-
trated in Figure 2). Coarse: Communication in the solve at the coarsest level. Residuals: Copying
of residuals at the fine and middle levels.

to use eight processors per node for these runs, rather than the full 16 processors per node used
in the three-level runs. In reporting the number of processors and computing the grind times in
Table 7, we report the number of processors actually used, whereas the system resources required
corresponded to double that number.

The lower parallel performance of the two-level calculations also affects the tradeoffs between
using the two-level and three-level algorithms from an accuracy standpoint. For the m = 30 case,
the accuracy of the two-level and three-level calculations are almost the same, and the cost of
the two-level calculation is far greater: for example, the system resources required for the 4096-
resolution two-level calculation are the same as those used for the 8192-resolution three-level cal-
culation. Asm decreases, the tradeoffs favor the two-level calculation more, but the computational
costs of obtaining a given level of accuracy using the two different strategies remains within a
factor of two.

In the runs of the three-level MLC, as shown in Table 6, over half the time is spent in the initial
fine-level solves. With the particular problem sizes, each processor holds data for 96 fine-level
boxes. The grind time for the initial fine-level solves ranges from 14.1 to 14.6 µsec/point, and
for the final fine-level solves ranges from 1.50 to 1.54 µsec/point. Overall, we are able to scale
a problem up from 16 to 1024 processors with, at worst, a 4% increase in the grind time. The
increase is due primarily to the increased cost of the global FFT solution at the coarsest level. We
believe that the performance of our implementation of the global FFT solver can be improved from
that seen here.

We compare these results with timings for an adaptive node-centered multigrid algorithm for
solving Poisson’s equation with Dirichlet boundary conditions [18] on the same platform. This
algorithm is run on three levels of boxes, with the fine and middle levels being the same as were
used with MLC, but the coarse level being fully refined into cubes of length 32, instead of parallel
slabs. Although we are solving a different problem here, we believe that these results are typical of
the cost of of using the same algorithm to solving the infinite-domain problem along the lines of the
algorithm in [1]. Comparison of results of the multigrid timings in Table 10 with the MLC timings
in Table 6 shows that the multigrid algorithm takes 5 to 7 times longer than MLC, although a
count of the number of floating-point operations shows that it uses only 1.38 to 1.45 times as many
such operations as MLC. Considerably more time is spent in communication in this algorithm
than in MLC (comparing Table 10 with Table 9). On the example on 128 processors, the time for
communication, at 78.87 seconds, exceeds the total time for the MLC solve on the same grids.

20

Size AMR Time Grind Communication time
P N iterations (sec) (µsec/pt) (sec) % of runtime
16 2048 9 352.04 110.61 25.81 7.49%

128 4096 9 468.41 148.03 78.87 17.65%

Table 10: Times for multigrid Poisson solver with Dirichlet boundary conditions. Compare with
Table 6 for MLC on the same fine-level and middle-level grids.

Finally, we can infer from the results given here a lower bound on the grind time required to
use a Hockney algorithm for solving Poisson’s equation at the same resolution as that on our finest
grid. We can infer the time per grid point of an FFT solver for a 323 grid from the time given
for the final fine grid solution in Table 6 to be about 1.52 µsec per grid point. Thus the cost per
mesh point per processor of performing an infinite-domain solution on a uniform grid with linear
dimension N using the James-Lackner algorithm is at least 1.52 × 2 × .2log2(N)µsec, where the
factor of 2 comes from the minimum cost of solving the two Dirichlet problems for the James-
Lackner algorithm, and .2 = 1/log2(32). This leads to grind times of 6.7 - 7.9 µsec for the range
of mesh resolutions given here. Thus, the grind times for the three-level MLC calculations are
approximately a factor of three times the lower bound we’ve estimated here.

6 Conclusions and Future Work

We have described here an extension to Anderson’s Method of Local Corrections for solving
Poisson’s equation in free space on nested multiresolution grids in three dimensions. This is a
non-iterative domain-decomposition method based on computing local convolutions with the free-
space Green’s function on overlapping rectangular subdomains with a fixed number of grid points,
combined with a representation of the nonlocal coupling between subdomains by a coarse-grid
calculation in a manner that is structurally similar to a single iteration of an FAS multigrid method.
The extension to locally-refined grids, and to more than two levels is straightforward. A key tech-
nical step is an extension to three dimensions of the James–Lackner method for computing local
convolutions, based on using FFTs for computing the volume potentials combined with a simpli-
fied version of the fast multipole method for surface-surface convolutions. This is combined with
an exact treatment of the contribution to the local potential from the piecewise-constant component
of the charge in each rectangle.

We demonstrated second-order accuracy of the method for a nontrivial example. We also
found that the computational cost of the method is approximately three times per grid point that
of FFT calculation at the same resolution, and scales to 1024 processors at approximately 95%
parallel efficiency, with less than 7% of the run time in MPI communication calls. We have also
compared the performance of this method to that of a conventional AMR multigrid solver on the
same grid hierarchy, and found that, on 128 processors, the latter takes seven times as much time
overall to compute the result, and spends 16 times as much time in MPI communication than
the present method. We know of no other method for Poisson’s equation in 3D that exhibits the
same combination of performance and scalability on multiresolution grid. We believe that the

21

results presented here indicate the possibility of scaling effectively to a PetaFlop computer (105

processors).
The results given here, while extremely promising, must be viewed as a first step in develop-

ing a robust and automatic piece of software. There are free parameters in the method, such as
the dependence of the degree of overlap on the level of refinement, that are ad-hoc, and need to
be defined systematically. One of the principal difficulties in this area is estimating and control-
ling the different sources of error in the algorithm separately and with complete generality. One
aspect of solving that problem is for all components of the algorithm to have tunable accuracy,
as opposed the present situation, in which the fourth-order Mehrstellen algorithm is a fixed tar-
get. Also, the current formulation of the algorithm does not preserve the geometric locality of the
charge distributions. For example, the field induced on a patch on the middle level in a three-level
calculation includes contributions from the charge distribution on finer patches not covered by the
middle patch. This feature makes it difficult to estimate the error as it propagates down through
refinement levels. We are currently working on a version of the algorithm that will preserve local-
ity under coarsening. As is the case with other adaptive methods, the general question of criteria
for determining the needed grid refinement, as a function of space, time, and data, is not com-
pletely resolved. However, our treatment of the coupling between refinement levels may simplify
the problem, relative to conventional finite difference methods [18]. Finally, there is still room for
further performance improvement. For example, the parallel FFT solver used for the coarsest level
is implemented using the Chombo communication primitives, that were not designed for the global
communications required in the transform step. Since this calculation is a parallel bottleneck for
the overall algorithm, any improvements would significantly improve the overall scaling of the
method.

There are a number of directions in which the method described here could be extended. These
include cell-centered solvers, solvers for the 3D Helmholtz equations, and higher-order methods.
The extension to other boundary conditions on the domain boundary (Dirichlet, Neumann) is
straightforward using method of images ideas; a more challenging question is the extension of
this approach to the case of Cartesian-grid representations of irregular boundaries [19, 15, 18].

7 Acknowledgments

Peter McCorquodale and Phillip Colella are supported by the Mathematical, Information, and
Computational Sciences Division of the Office of Science, U.S. Department of Energy under
contract number DE-AC03-76SF00098. Gregory Balls and Scott Baden were supported by the
National Partnership for Advanced Computational Infrastructure (NPACI) under NSF contract
ACI9619020. This research used resources of the National Energy Research Scientific Comput-
ing Center, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098.

References

[1] A. S. Almgren, T. Buttke, and P. Colella. A fast adaptive vortex method in 3 dimensions. J.
Comput. Phys., 113(2):177–200, August 1994.

22

[2] C. R. Anderson. A method of local corrections for computing the velocity field due to a
distribution of vortex blobs. J. Comput. Phys., 62:111–123, 1986.

[3] Scott B. Baden. Run-time Partitioning of Scientific Continuum Calculations Running on
MultiProcessors. PhD thesis, UC Berkeley Computer Science Division, April 1987.

[4] D. Bai and A. Brandt. Local mesh refinement multi-level techniques. SIAM Journal Sci.Stat.
Comput., 8:109–134, 1987.

[5] G. T. Balls. A Finite Difference Domain Decomposition Method Using Local Corrections for
the Solution of Poisson’s Equation. PhD thesis, University of California, Berkeley, 1999.

[6] G. T. Balls and P. Colella. A finite difference domain decomposition method using local
corrections for the solution of Poisson’s equation. J. Comput. Phys., 180(1):25–53, July
2002.

[7] A. Brandt. Multilevel adaptive methods for boundary-value problems. Math. Comput.,
31(138):333–390, April 1977.

[8] H. Cheng, J. Huang, and T. J. Leiterman. A fast adaptive solver for the modified Helmholtz
equation in two dimensions. J. Comput. Phys., 211(2):616–637, January 2006.

[9] F. Ethridge and L. Greengard. A new fast-multipole accelerated Poisson solver in two dimen-
sions. SIAM Journal Sci. Comput., 23(3):741–760, 2001.

[10] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. In
ICASSP Conference Proceedings, volume 3, pages 1381–1384. ICASSP, 1998.

[11] L. Greengard and J.-Y. Lee. A direct adaptive Poisson solver of arbitrary order accuracy. J.
Comput. Phys., 125(2):415–424, May 1996.

[12] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys.,
73:325–348, 1987.

[13] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. McGraw-Hill,
1981.

[14] R. A. James. The solution of Poisson’s equation for isolated source distributions. J. Comput.
Phys., 25(2):71–93, October 1977.

[15] H. Johansen and P. Colella. A Cartesian grid embedded boundary method for Poisson’s
equation on irregular domains. J. Comput. Phys., 147(2):60–85, December 1998.

[16] Oliver D. Kellogg. Foundations of Potential Theory. Dover Publications, 1953.

[17] K. Lackner. Computation of ideal MHD equilibria. Computer Physics Communications,
12(1):33–44, 1976.

[18] P. McCorquodale, P. Colella, D. Grote, and J.-L. Vay. A node-centered local refinement
algorithm for Poisson’s equation in complex geometries. J. Comput. Phys., 201:34–60, 2004.

23

[19] G. H. Shortley and R. Weller. The numerical solution of Laplace’s equation. J. Appl. Phys.,
9:334–348, 1938.

[20] Barry F. Smith, Petter E. Bjørstad, and William D. Gropp. Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press,
2004.

24

